3D Visual Response Properties of MSTd Emerge from an Efficient, Sparse Population Code.
نویسندگان
چکیده
UNLABELLED Neurons in the dorsal subregion of the medial superior temporal (MSTd) area of the macaque respond to large, complex patterns of retinal flow, implying a role in the analysis of self-motion. Some neurons are selective for the expanding radial motion that occurs as an observer moves through the environment ("heading"), and computational models can account for this finding. However, ample evidence suggests that MSTd neurons exhibit a continuum of visual response selectivity to large-field motion stimuli. Furthermore, the underlying computational principles by which these response properties are derived remain poorly understood. Here we describe a computational model of macaque MSTd based on the hypothesis that neurons in MSTd efficiently encode the continuum of large-field retinal flow patterns on the basis of inputs received from neurons in MT with receptive fields that resemble basis vectors recovered with non-negative matrix factorization. These assumptions are sufficient to quantitatively simulate neurophysiological response properties of MSTd cells, such as 3D translation and rotation selectivity, suggesting that these properties might simply be a byproduct of MSTd neurons performing dimensionality reduction on their inputs. At the population level, model MSTd accurately predicts eye velocity and heading using a sparse distributed code, consistent with the idea that biological MSTd might be well equipped to efficiently encode various self-motion variables. The present work aims to add some structure to the often contradictory findings about macaque MSTd, and offers a biologically plausible account of a wide range of visual response properties ranging from single-unit selectivity to population statistics. SIGNIFICANCE STATEMENT Using a dimensionality reduction technique known as non-negative matrix factorization, we found that a variety of medial superior temporal (MSTd) neural response properties could be derived from MT-like input features. The responses that emerge from this technique, such as 3D translation and rotation selectivity, spiral tuning, and heading selectivity, can account for a number of empirical results. These findings (1) provide a further step toward a scientific understanding of the often nonintuitive response properties of MSTd neurons; (2) suggest that response properties, such as complex motion tuning and heading selectivity, might simply be a byproduct of MSTd neurons performing dimensionality reduction on their inputs; and (3) imply that motion perception in the cortex is consistent with ideas from the efficient-coding and free-energy principles.
منابع مشابه
Spatiotemporal properties of vestibular responses in area MSTd.
Recent studies have shown that many neurons in the primate dorsal medial superior temporal area (MSTd) show spatial tuning during inertial motion and that these responses are vestibular in origin. Given their well-studied role in processing visual self-motion cues (i.e., optic flow), these neurons may be involved in the integration of visual and vestibular signals to facilitate robust perceptio...
متن کاملVisual Nonclassical Receptive Field Effects Emerge from Sparse Coding in a Dynamical System
Extensive electrophysiology studies have shown that many V1 simple cells have nonlinear response properties to stimuli within their classical receptive field (CRF) and receive contextual influence from stimuli outside the CRF modulating the cell's response. Models seeking to explain these non-classical receptive field (nCRF) effects in terms of circuit mechanisms, input-output descriptions, or ...
متن کاملClustering of self-motion selectivity and visual response properties in macaque area MSTd.
Neurons in the dorsal subdivision of the medial superior temporal area (MSTd) show directionally selective responses to both visual (optic flow) and vestibular stimuli that correspond to translational or rotational movements of the subject. Previous work has shown that MSTd neurons are clustered within the cortex according to their directional preferences for optic flow, suggesting that there m...
متن کاملResponse of MSTd neurons to simulated 3D orientation of rotating planes.
We studied whether the dorsal division of the medial superior temporal area (MSTd) in the macaque has activity related to structure-from-motion (SFM) processing. As the simplest form of three-dimensional (3D) structure, we chose a planar stimulus and examined the relation between the neural responses and the simulated 3D orientation of the plane defined by motion cues. We recorded from 114 MSTd...
متن کاملNeural Mechanisms for Mid-Level Optical Flow Pattern Detection
This paper describes a new model for extracting large-field optical flow patterns to generate distributed representations of neural activation to control complex visual tasks such as 3D egomotion. The neural mechanisms draw upon experimental findings about the response properties and specificities of cells in areas V1, MT and MSTd along the dorsal pathway. Model V1 cells detect local motion est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 36 32 شماره
صفحات -
تاریخ انتشار 2016